Sparse Overcomplete Word Vector Representations

نویسندگان

  • Manaal Faruqui
  • Yulia Tsvetkov
  • Dani Yogatama
  • Chris Dyer
  • Noah A. Smith
چکیده

Current distributed representations of words show little resemblance to theories of lexical semantics. The former are dense and uninterpretable, the latter largely based on familiar, discrete classes (e.g., supersenses) and relations (e.g., synonymy and hypernymy). We propose methods that transform word vectors into sparse (and optionally binary) vectors. The resulting representations are more similar to the interpretable features typically used in NLP, though they are discovered automatically from raw corpora. Because the vectors are highly sparse, they are computationally easy to work with. Most importantly, we find that they outperform the original vectors on benchmark tasks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rotated Word Vector Representations and their Interpretability

Vector representation of words improves performance in various NLP tasks, but the high-dimensional word vectors are very difficult to interpret. We apply several rotation algorithms to the vector representation of words to improve the interpretability. Unlike previous approaches that induce sparsity, the rotated vectors are interpretable while preserving the expressive performance of the origin...

متن کامل

Learning Data Representations with Sparse Coding Neural Gas

We consider the problem of learning an unknown (overcomplete) basis from an unknown sparse linear combination. Introducing the “sparse coding neural gas” algorithm, we show how to employ a combination of the original neural gas algorithm and Oja’s rule in order to learn a simple sparse code that represents each training sample by a multiple of one basis vector. We generalise this algorithm usin...

متن کامل

Dictionary Learning Algorithms for Sparse Representation

Algorithms for data-driven learning of domain-specific overcomplete dictionaries are developed to obtain maximum likelihood and maximum a posteriori dictionary estimates based on the use of Bayesian models with concave/Schur-concave (CSC) negative log priors. Such priors are appropriate for obtaining sparse representations of environmental signals within an appropriately chosen (environmentally...

متن کامل

When are Overcomplete Topic Models Identifiable? Uniqueness of Tensor Tucker Decompositions with Structured Sparsity

Overcomplete latent representations have been very popular for unsupervised feature learning in recent years. In this paper, we specify which overcomplete models can be identified given observable moments of a certain order. We consider probabilistic admixture or topic models in the overcomplete regime, where the number of latent topics can greatly exceed the size of the observed word vocabular...

متن کامل

An EM algorithm for learning sparse and overcomplete representations

An expectation-maximization (EM) algorithm for learning sparse and overcomplete representations is presented in this paper. We show that the estimation of the conditional moments of the posterior distribution can be accomplished by maximum a posteriori estimation. The approximate conditional moments enable the development of an EM algorithm for learning the overcomplete basis vectors and inferr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015